ON THE SPLITTING PRINCIPLE FOR COHOMOLOGICAL INVARIANTS OF REFLECTION GROUPS

نویسندگان

چکیده

Let k0 be a field of characteristic not two, (V, b) finite-dimensional regular bilinear space over k0, and W subgroup the orthogonal group with property that subring W-invariants symmetric algebra V is polynomial k0. We prove Serre’s splitting principle holds for cohomological invariants values in Rost’s cycle modules.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric methods for cohomological invariants

We explain how to exploit Rost’s theory of Chow groups with coefficients to carry some computations of cohomological invariants. In particular, we use the idea of the “stratification method” introduced by Vezzosi. We recover a number of known results, with very different proofs. We obtain some new information on spin groups and on PGL4.

متن کامل

Separating Invariants and Finite Reflection Groups

Roughly speaking, a separating algebra is a subalgebra of the ring of invariants whose elements distinguish between any two orbits that can be distinguished using invariants. In this paper, we introduce a more geometric notion of separating algebra. This allows us to prove that when there is a polynomial separating algebra, the group is generated by reflections, and when there is a complete int...

متن کامل

“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”

abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...

15 صفحه اول

Motivic construction of cohomological invariants

The norm varieties and the varieties with special correspondences play a major role in the proof of the Bloch-Kato Conjecture by M. Rost and V. Voevodsky. In the present paper we show that a variety which possesses a special correspondence is a norm variety. As an unexpected application we give a positive answer to a problem of J.-P. Serre about groups of type E8 over Q. Apart from this we incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2021

ISSN: ['1531-586X', '1083-4362']

DOI: https://doi.org/10.1007/s00031-020-09637-6